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Cell segmentation is a critical step for quantitative single-cell analysis 
in microscopy images. Existing cell segmentation methods are often 
tailored to specific modalities or require manual interventions to specify 
hyper-parameters in different experimental settings. Here, we present a 
multimodality cell segmentation benchmark, comprising more than 1,500 
labeled images derived from more than 50 diverse biological experiments. 
The top participants developed a Transformer-based deep-learning 
algorithm that not only exceeds existing methods but can also be applied 
to diverse microscopy images across imaging platforms and tissue types 
without manual parameter adjustments. This benchmark and the improved 
algorithm offer promising avenues for more accurate and versatile cell 
analysis in microscopy imaging.

Cell segmentation is a fundamental task that is universally required 
for biological image analysis across a large number of different experi-
mental settings and imaging modalities. For example, in multiplexed 
fluorescence image-based cancer microenvironment analysis, cell seg-
mentation is the prerequisite for the identification of tumor subtypes, 
composition and organization, which can lead to important biological 
insights1–3; however, the development of a universal and automatic cell 
segmentation technique continues to pose major challenges due to the 
extensive diversity observed in microscopy images. This diversity arises 
from variations in cell origins, microscopy types, staining techniques 
and cell morphologies. Recent advances4 have successfully demon-
strated the feasibility of automatic and precise cellular segmentation 
for specific microscopy image types and cell types, such as fluorescence 
and mass spectrometry images5,6, differential interference contrast 

images of platelets7, bacteria images8 and yeast images9,10, but the selec-
tion of appropriate segmentation models remains a nontrivial task for 
nonexpert users in conventional biology laboratories.

Efforts have been made toward the development of generalized 
cell segmentation algorithms8,11; however, these algorithms were  
primarily trained using datasets consisting of gray-scale images and 
two-channel fluorescent images, lacking the necessary diversity to 
ensure robust generalization across a wide range of imaging modalities. 
For example, segmentation models have struggled to perform effec-
tively on RGB images, such as bone-marrow aspirate slides stained with 
Jenner–Giemsa. Furthermore, these models often require manual selec-
tion of both the model type and the specific image channel to be seg-
mented, posing challenges for biologists with limited computational 
expertise. In addition to directly training general cell segmentation 
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tissue types, without requiring additional parameter tuning (Fig. 1a). 
The algorithms were expected to operate in a fully automatic manner, 
generating cell instance masks where each cell is assigned a unique 
label. The challenge comprised two phases (Fig. 1b). In the development 
phase, participants were provided with a dataset consisting of 1,000 
microscopy images, each accompanied by annotated cell masks. Rec-
ognizing the potential benefits of leveraging unlabeled data to enhance 
model performance17, we also made an additional set of 1,725 unlabeled 
images available for participants to utilize. Participants were given the 
flexibility to decide whether to incorporate this unlabeled dataset into 
their algorithms. This setup aligns with real-world scenarios encoun-
tered in biological research, where only a limited number of labeled 
images are typically available alongside a wealth of unlabeled images.

To facilitate timely model validation, a separate tuning set contain-
ing 101 images was provided to participants, but the corresponding 
annotations were not disclosed. Instead, we established an online 
evaluation platform, enabling participants to upload their segmenta-
tion results and receive evaluation scores. These scores were made pub-
licly available on a leaderboard, enabling direct comparisons among 
participants and their algorithms throughout the development phase.

In the subsequent testing phase, the top 30 teams, as ranked on 
the public tuning set leaderboard, were invited to make the testing 
submission. The testing set remained hidden from participants, aiming 
to avoid potential label leaking and cheating. To ensure standardized 
evaluation, participants were required to package and submit their 
algorithms as Docker containers. Challenge organizers ran the sub-
mitted Docker containers on the holdout testing set comprising 422 
microscopy images. Out of the 30 invited top teams, 28 teams made 
successful submissions, whereas one team did not submit and another 
team submitted after the deadline, making their submission ineligible 
for the final ranking. To ensure a fair comparison, we executed the 
Docker containers sequentially on the same workstation. The running 
time for each image was recorded, alongside the corresponding seg-
mentation accuracy score. Both of them were used for the final ranking 
and subsequent analysis of the algorithms (Methods).

Challenge data: a large and diverse multimodality microscopy 
image dataset
Data diversity plays a pivotal role in constructing generalist microscopy 
image segmentation models18. In this challenge, we incorporated the 
diversity of microscopy images from four dimensions: cell origins, 
staining methods, microscope types and cell morphologies (Fig. 2a). 
First, the origin of cells in microscopy images varies substantially, as 
they can derive from diverse tissues or exist within cell cultures under 
various conditions. This introduces considerable variability, as cells 
within tissues tend to be densely packed and spatially organized, 
whereas cells in culture are often sparsely distributed and randomly 
positioned. Second, the choice of staining methods, such as Jenner–
Giemsa in brightfield microscopy or the utilization of specific antibod-
ies in fluorescent microscopy, further contributes to the diversity by 
highlighting different cellular structures or proteins. Third, the use of 
different microscope types, such as brightfield, fluorescent, PC and DIC, 
introduces substantial differences in image characteristics, textures 
and associated artifacts. Fourth, cell morphologies exhibit substantial 
variations across different cell types. While most cells tend to have a 
round shape, certain cells may display elongated or irregular shapes.

We curated a diverse microscopy image dataset by collecting 
images (and annotations if available) from over 20 biology labo-
ratories, including more than 50 different biological experiments  
(Supplementary Tables 1–3). This comprehensive dataset encompassed 
four common microscopy image modalities: brightfield, fluorescent, 
PC and DIC. The challenge garnered a large number of interest and par-
ticipation, attracting over 400 participants from 37 different countries, 
reflecting the global reach and impact of the challenge (Fig. 2b). The 
training set contained a total of 1,000 images, with 300 images each in 

models with large-scale labeled datasets, transfer-learning-based 
algorithms are a complementary branch toward universal solutions, 
allowing biologists to rapidly train customized models on their own 
microscopy images. A prime example is Cellpose 2.0 (ref. 12), which 
demonstrates the efficacy of adapting a pretrained model to new 
images. Remarkably, it only requires 500–1,000 user-annotated 
image patches to achieve performance on par with models trained on  
thousands of image patches.

Biomedical image data science competitions have emerged 
as an effective way to accelerate the development of cutting-edge 
algorithms. Several successful competitions have been specifically 
organized for microscopy image analysis, such as the Cell Tracking 
Challenge (CTC)13,14, the Data Science Bowl (DSB) Challenge15 and the 
Colon Nuclei Identification and Counting (CoNIC) Challenge16. These 
competitions have played a crucial role in expediting the adoption of 
modern machine learning and deep-learning algorithms in biomedi-
cal image analysis; however, it is worth noting that these challenges 
have primarily focused on a limited subset of microscopy image types. 
For example, the CTC primarily concentrated on label-free images, 
thereby excluding stained images such as multiplexed immunofluo-
rescent images. Similarly, the DSB Challenge emphasized nucleus 
segmentation in fluorescent and histology images while disregard-
ing phase-contrast (PC) and differential interference contrast (DIC) 
images. The segmentation task in the CoNIC Challenge is also limited 
to nucleus segmentation in hematoxylin and eosin-stained images. 
Consequently, the algorithms developed through these competitions 
are often tailored to handle only specific types of microscopy images, 
limiting their generalizability. Moreover, the evaluation metrics  
used in these challenges predominantly prioritize segmentation accu-
racy, while neglecting algorithm efficiency. As a result, the pursuit of 
higher accuracy scores often leads to the adoption of computation-
ally demanding approaches. For instance, the CTC top-performing 
algorithms14 employed customized models for each dataset in the cell 
segmentation task, while the DSB winning algorithm15 used an ensem-
ble of 32 models. Such resource-intensive strategies hinder the wide 
deployment of these algorithms in biology practice.

To overcome the aforementioned limitations and foster the 
development of universal and efficient cell segmentation methods 
for microscopy images, we took the initiative to organize a global chal-
lenge at the Conference on Neural Information Processing Systems 
(NeurIPS). As one of the largest international conferences in the field of 
artificial intelligence (AI), NeurIPS provided an ideal platform for this 
endeavor. Participants in the challenge were provided with a diverse 
training set and a separate tuning set to develop and refine their cell 
segmentation algorithms. During the testing phase, participants were 
required to package their algorithms as Docker containers, enabling the 
challenge organizers to evaluate them on a carefully curated holdout 
testing set on the same computing platform. Notably, the holdout 
testing set incorporated images from new biological experiments, 
aiming to assess the algorithms’ ability to generalize effectively to 
previously unseen data. Additionally, the testing set included two 
whole-slide images (WSIs), serving as a means to evaluate the algo-
rithms’ suitability for handling large-scale images. Different from 
existing challenges that focused on specific microscopy image types, 
this initiative represents the first instance where cell segmentation 
algorithms were challenged to efficiently handle a broad spectrum of 
microscopy images with one single model and generalize to new images 
without manual intervention.

Results
Challenge design: toward universal and efficient cell 
segmentation algorithms
The primary objective of this challenge was to benchmark universal 
algorithms capable of accurately segmenting cells from a wide range 
of microscopy images obtained from various imaging platforms and 
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the brightfield and fluorescent categories and 200 images each in the 
PC and DIC categories (Fig. 2c). The annotated dataset contained 12,702 
cells in brightfield images, 130,194 cells in fluorescent images, 9,504 
cells in PC images and 16,091 cells in DIC images (Fig. 2d). Notably, the 
higher cell count in fluorescent images compared to other modalities 
can be attributed to the denser distribution of cells observed in the 
collected fluorescent images.

Figure 2e shows four microscopy images randomly selected from 
each modality in the training set and testing set. To assess the algo-
rithm’s generalization capabilities, all testing images were sourced 
from new biological experiments, including some that featured previ-
ously unseen tissues or cell types not present in the training set. The 
testing set consisted of 120 brightfield images, 122 fluorescent images, 
120 PC images and 60 DIC images (Fig. 2f). These quantities were  
determined based on the available images collected for the challenge. 
The number of cells in the testing set was comparable to or greater 
than that of the training set (Fig. 2g). Additionally, the fluorescent 
image subset of the testing set included two WSIs, which served  
the purpose of evaluating the algorithms’ ability in handling large- 
scale imaging datasets.

In comparison to previous datasets utilized in cell segmentation 
challenges14,19 and nucleus segmentation challenges15,16, our dataset 
exhibits substantially enhanced diversity and encompasses a larger 

number of labeled cells. This extensive dataset serves as a fertile ground 
for fostering the development of advanced cell segmentation algo-
rithms, enabling researchers to explore and innovate in the field.

Algorithm overview: the Transformer-based algorithm 
achieved superior performance
All algorithms in this challenge employed deep-learning-based 
approaches, a prevailing trend considering the remarkable perfor-
mance achieved in various specific cell segmentation tasks5,10,14, as 
well as in recent generalist cell segmentation algorithms8,12. Existing 
algorithms predominantly relied on convolutional neural networks 
(CNNs) such as U-Net20 and DeepLab21; however, it is worth noting 
that these CNN-based cell segmentation models exhibited limited 
generalization capability when confronted with the task of segment-
ing diverse images without additional human intervention, such as 
manual selection of channels or model fine-tuning, as demonstrated 
in the following sections.

In contrast, Transformers22, a new type of deep-learning net-
work integrating attention mechanisms for feature extraction, have 
exhibited robust performance and generalization capabilities across 
various computer vision tasks23,24; however, the potential of Trans-
formers in biological image analysis remains relatively unexplored18. 
Distinguished from existing benchmarks14,15, our challenge provided 
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Fig. 1 | Overview of the challenge task and pipeline. a, The challenge aimed to 
facilitate the development of universal cell segmentation algorithms that can 
segment a wide range of microscopy images without manual intervention. b, The 
challenge contained two phases. During the development phase, participants 
developed automatic segmentation algorithms based on 1,000 labeled images 
and 1,725 unlabeled images. The algorithms could be evaluated on a tuning set 

with 101 images and the online evaluation platform automatically returned 
back the quantitative performance. During the testing phase, each team could 
submit one algorithm via the Docker container as the final solution, which was 
independently evaluated on the holdout testing set with 422 images to obtain 
ranking results.
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a significantly larger and more diverse microscopy image dataset. 
Leveraging this unprecedented dataset and a meticulously designed 
benchmark, Transformer-based deep-learning models emerged as 
exceptional algorithms and achieved notably superior performance.

Best-performing algorithm. Lee et al.25 (T1-osilab) proposed a 
Transformer-based framework to harmonize model-centric and 
data-centric approaches. The model architecture used SegFormer26 
and the multiscale attention network27 as the encoder and decoder. 
The SegFormer encoder was a hierarchical Transformer, enabling 
the extraction of both coarse and fine-grained features. The decoder 
contained position-wise attention blocks and multiscale fusion atten-
tion blocks for feature map fusion. The model output comprised two 
separate heads for cell recognition and distinction, originally proposed 
elsewhere11. The model underwent a two-step training process. It was 
first pretrained on public microscopy images and then fine-tuned on 
the challenge dataset with cell-aware data augmentation. Additionally, 
cell memory reply28, concatenating the images from the pretraining and 
fine-tuning datasets in each mini-batch, was used to avoid catastrophic 
forgetting during fine-tuning (Methods).

Second-best-performing algorithm. Lou et al.29 (T2-sribdmed) first 
divided the images into four distinct categories based on low-level 
image features (for example, intensities) in an unsupervised way. Then, 
class-wise cell segmentation models were trained for each category. 
The model employed U-Net-like architecture where ConvNeXT30 was 
used as the building blocks. To address the diverse cell morpholo-
gies, two distinct decoder heads were employed. One decoder pre-
dicted the cell distance map and semantic map, effectively segmenting 
round-shaped cells, while the other decoder predicted the cell gradient 
map to handle cells with irregular shapes. The training process involved 
pretraining the model on the entire dataset, followed by fine-tuning on 
each of the four categories, resulting in the creation of four models. 
During inference, the image was initially classified into one of the four 
categories and subsequently, the corresponding model was used to 
perform the segmentation process (Methods).

Third-best-performing algorithm. Upschulte et al.31 (T3-cells) 
designed an uncertainty-aware contour proposal network, employing 
ResNeXt-101 (ref. 32) to extract multiscale features from images, which 
were then processed through four decoder heads. A classification head 
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identified potential cell locations, while a contour regression head 
predicted sparse cell contours. To further improve accuracy, a refine-
ment regression head was employed to revise the pixels within the cell 
contour. In addition, they incorporated an uncertainty head to estimate 
prediction confidence, which played a crucial role in the nonmaxi-
mum suppression post-processing. This incorporation of uncertainty 
information effectively facilitated the removal of redundant contour 
proposals and enhanced segmentation accuracy (Methods).

Other strategies. Table 1 summarizes the strategies employed by the 
top three teams. Given the considerable variation in image intensity 
and size across different modalities, all teams adopted intensity nor-
malization techniques (for example, scaling the intensity to [0, 255]) 
during preprocessing and opted for patch-based sampling for model 
training. To enhance the model generalization ability and mitigate the 
risk of overfitting, diverse data augmentation methods were utilized. 
In addition to using external datasets, teams T2 and T3 leveraged the 
unlabeled data for model pretraining. Despite the common adoption 
of an encoder–decoder framework to construct networks, the top 
teams showcased variations in their choice of backbone networks and 
decoder heads. Consequently, the corresponding post-processing 
methods exhibited diversity.

Next, we present the quantitative results of the 28 algorithms on 
the holdout testing set. Figure 3a (Supplementary Table 4) shows a com-
parative view of F1 scores across 28 algorithms on the testing set. The 
scores are presented in the form of a dot and box plot, offering insights 
into both their central tendency and dispersion of the scores. The top 
three algorithms surpass other algorithms by a clear margin, resulting 
in median F1 scores of 89.7% (interquartile range (IQR) 84.1–94.8%), 
84.5% (IQR 70.6–92.3%) and 84.4% (IQR 77.4–91.1%), respectively. Of 
particular note is the performance of the winning algorithm (T1-osilab). 
It stands apart not merely for its superior median F1 score, but also for 
the reduced number of outliers in its score distribution, suggesting a 
heightened level of robustness in its performance.

The bubble plot (Fig. 3b) presents the median F1 score, running 
time and the maximum GPU memory consumption of 28 algorithms, 
which can provide insights into the tradeoff between algorithm accu-
racy and efficiency. Most algorithms optimized the efficiency, ena-
bling them to finish the inference within 13 s. It is essential to mention 
that this time metric also included the Docker starting time, hence 
the actual inference time is considerably shorter. For instance, the 
best-performing algorithm (T1-osilab) achieved an inference time of 
approximately 2 s for an image size of 1,000 × 1,000. Additionally, the 
median maximum GPU memory consumption was 3,099 MB (approxi-
mately $500), suggesting that these algorithms are affordable for 
practical deployment. This favorable combination of accuracy and 

efficiency makes them well suited for real-world applications in bio-
logical image analysis.

We also performed a statistical significance analysis for the 28 
algorithms (Fig. 3c). Each team was compared to the other teams based 
on the one-sided Wilcoxon signed-rank test. Yellow shading indicates 
that the F1 scores of the algorithm on the x axis are significantly supe-
rior (P < 0.05) to those from the algorithm on the y axis, whereas blue  
shading indicates no significant difference between the two algorithms. 
The winning algorithm is significantly better than all the others. The 
second algorithm and the third algorithm obtain comparable per-
formances with no significant differences, but they are significantly 
superior to other teams.

Furthermore, we analyzed the ranking stability based on bootstrap 
sampling (1,000 times). The results are visualized by blob plot (Fig. 3d). 
The blob area is proportional to the relative frequency of achieved 
ranks across the bootstrap samples and the median rank for each algo-
rithm is indicated by a black cross. The winning algorithm has a blob 
area of 100%, indicating that it outperforms other algorithms in all the 
bootstrap samples. The second and third-best-performing algorithms 
still obtain better rank than other algorithms with a clear gap, whereas 
the second-best-performing algorithm has a lower median rank than 
the third-best-performing algorithm. Moreover, we compared the 
ranks of the 28 algorithms based on different ranking schemes (Fig. 3e): 
median-then-rank, mean-then-rank, rank-then-median, statis tical 
significance test-based ranking and rank-then-mean (Methods).  
The winning algorithm consistently ranks first place across all the 
ranking schemes, whereas most of the other teams have fluctuations 
in their rank.

Finally, we analyzed the ranking stability of the employed metrics. 
The ranking list based on the full testing set is pairwise compared to 
the ranking lists based on the individual sample in the 1,000 bootstrap 
samples. Kendall’s tau correlation is computed as a quantitative metric 
(Fig. 3f and Extended Data Fig. 2). It can be seen that Kendall’s τ scores 
are very close to 1 for both F1 scores and running time, indicating a high 
degree of ranking agreement. Additionally, the compact distributions 
of these scores further confirm the stability of the ranking results with 
respect to sampling variability. These findings provide robust evidence 
that the obtained rankings are highly consistent and reliable across 
different samples.

The best-performing algorithms outperform state-of-the-art 
cell segmentation algorithms
To demonstrate the advancement of the winning algorithm beyond the 
state of the art (SOTA) in cell segmentation, we conducted a compara-
tive analysis involving the top three algorithms from our challenge, the 
leading algorithm KIT-GE33 from the CTC cell segmentation task and 

Table 1 | Characteristics of the top three best-performing algorithms in preprocessing, data augmentation, network 
architecture and post-processing

Team Preprocessing Data augmentation Network architecture Post-processing

IN PS IS ED UD Others Encoder 
backbone

Decoder heads

T1-osilab25 ✓ ✓ ✓ ✓ − Cell-wise intensity perturbation; 
boundary exclusion; oversample 
minor modality

SegFormer Cell probability head; gradient 
fields regression head

Gradient tracking; 
exclude small cells; 
fill holes; TTA;

T2-sribdmed29 ✓ ✓ ✓ ✓ ✓ – ConvNeXt Cell probability head; radial 
distance head; gradient fields 
regression head

NMS; watershed

T3-cells31 ✓ ✓ ✓ ✓ ✓ Cell-aware rescaling ResNeXt-101 Classification head; contour 
regression head; local refinement 
regression head; boundary 
uncertainty estimation head

NMS; convert 
contours to masks; 
region growing

IN, intensity normalization; PS, patch sampling; IS, intensity and spatial data augmentation; ED, external dataset; UD, unlabeled data; NMS, nonmaximum suppression; TTA, test-time 
augmentation. – indicates not used.
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two widely recognized pretrained generalist models, Cellpose11 and 
Omnipose8. The comparisons also included model variants of Cellpose 
and Omnipose that were trained from scratch on our challenge dataset. 
The aim was to determine whether the performance improvement 

mainly resulted from the training set. Recognizing the importance 
of transfer-learning-based algorithms in achieving a universal solu-
tion, we further collected a new external testing set with 157 diverse 
yeast and bacteria cell images (Methods and Supplementary Table 4) 
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to thoroughly compare the top three algorithms to the fine-tuned 
Cellpose (Cellpose 2.0, ref. 12) and Omnipose models. For both Cellpose 
and Omnipose, we used the ‘cyto2’ model checkpoints, recognized 
for their exceptional generalizability, as the pretrained model and the 
foundation for further fine-tuning.

Figure 4a (Supplementary Table 6) illustrates the F1 scores of 
these eight methods on the testing set, revealing that the top three 
best-performing algorithms achieved significantly higher accuracy 
than the existing SOTA algorithms. Specifically, The T1 algorithms 
achieved a median F1 score of 89.7% (IQR 36.7–82.4%), surpassing 
the KIT-GE, Cellpose-pretrain, Cellpose-scratch, Omnipose-pretrain 
and Omnipose-scratch by 49.9%, 24.4%, 35.4%, 58.9% and 48.7%, 
respectively.

Figure 4b presents the results on the brightfield images, where 
the top two best-performing algorithms remained at the forefront, 
achieving median F1 scores of 91.4% (IQR 88.0–94.9%) and 91.0% (IQR 
86.1–93.8%), respectively. The Cellpose-finetune model exhibited 
comparable performance to the third-best-performing algorithm, 
achieving a significant improvement of 16.6% in median F1 score over 
the Cellpose-pretrain model, as anticipated due to its training on 
the challenge dataset. Figure 4c shows the results on the fluorescent 
images, where the third-best-performing algorithm outperformed 
others with a median F1 score of 80.8% (IQR 71.6–91.5%), followed by 
the best-performing algorithm and the Cellpose-pretrain model; how-
ever, the F1 score of Cellpose-scratch and Omnipose-scratch declined 
substantially by 44.1% and 7.4%, respectively. This decrease can be 
attributed to the testing images being from new cell types not present 
in the training set.

In Fig. 4d, the results for PC images demonstrated that the top 
three best-performing algorithms maintained their superiority in this 
category, achieving median F1 scores of 93.6% (IQR 87.9–96.4%), 88.8% 
(77.7–96.4%) and 90.3% (84.3–95.0%), respectively. The CTC Challenge’s 
top-performing segmentation algorithm, KIT-GE, excelled in PC images 
due to its design for label-free images and the relatively simple segmen-
tation of round-shaped cells. Figure 4e shows the results on DIC images 
with the top three best-performing algorithms once again achieving 
the highest performance, achieving median F1 scores of 86.8% (IQR 
83.5–88.0%), 75.0% (IQR 68.9–78.1%) and 80.3% (77.2–85.1%), respec-
tively. While Omnipose-scratch yielded the best performance among 
the SOTA methods with a median F1 score of 43.4% (IQR 33.1–60.9%), it 
still fell significantly behind the top three best-performing methods. 
Conversely, KIT-GE and Cellpose struggled in this category, because 

the DIC testing images were from new biological experiments and 
exhibited very low contrast.

We further visualized segmentation examples of the seven algo-
rithms to gain insights into their characteristics (Fig. 4f and Extended 
Data Fig. 1). The top three best-performing algorithms demonstrated 
relatively robust results, with the best-performing algorithm (T1-osilab) 
displaying exceptional accuracy across diverse microscope types, 
cell types and image contrasts. Notably, KIT-GE exhibited better per-
formance on PC images than stained images, as it was designed based 
on a label-free challenge dataset. Nevertheless, KIT-GE struggled to 
segment other images from new biological experiments, indicating 
limited generalization ability in this context. The Cellpose models 
outperformed Omnipose models on most images, except for DIC 
images featuring numerous small objects with low contrasts. Addi-
tionally, the Cellpose-scratch model surpassed Cellpose-pretrain on 
brightfield images, exhibiting fewer segmentation errors; however, its 
performance decreased on other modalities that contained previously 
unseen images, leading to an increased number of missed cells in the 
segmentation results.

Finally, we conducted a post-challenge analysis by evaluating the 
top three algorithms, KIT-GE and three variants each of Cellpose and 
Omnipose models (pretrained, trained from scratch and fine-tuned by 
transfer learning) using a new testing set comprising unseen images 
(Methods). As shown in Fig. 4g (Supplementary Table 7 and Fig. 2), 
the top three algorithms outperformed others, achieving median F1 
scores of 95.0% (IQR 93.0–97.9%), 88.7% (IQR 72.1–93.9%) and 93.3% 
(IQR 83.7–96.7%), respectively. Notably, the fine-tuned Cellpose and 
Omnipose models surpassed their scratch-trained counterparts by 
12.2% and 11.7%, respectively, demonstrating the value of previously 
learned features in new learning contexts; however, their performances 
were still lower than the original pretrained models. This discrepancy is 
largely attributed to the testing images originating from new sources, 
leading to a case of catastrophic forgetting during the fine-tuning 
process, a common phenomenon in transfer learning34,35.

Discussion
The primary and arguably most notable observation in this challenge 
is the unequivocal superiority of the Transformer-based algorithm, 
which exhibited significantly enhanced performance compared to 
existing SOTA cell segmentation algorithms. Transformers offer 
several unique advantages compared to CNNs. First, Transformers22 
use self-attention mechanisms that can capture global context and 

Fig. 3 | Evaluation results of 28 algorithms on the holdout testing set. a, Dot 
and box plot of the F1 scores on the testing set (n = 422 independent images). The 
box plots display descriptive statistics across all testing cases, with the median 
value represented by the horizontal line within the box, the lower and upper 
quartiles delineating the borders of the box and the vertical black lines indicating 
1.5 × IQR. b, The top algorithms achieve a good tradeoff between segmentation 
accuracy (y axis) and efficiency (x axis). The circle size is proportional to GPU 
memory consumption. c, Pairwise significant test results (one-sided Wilcoxon 
signed-rank test) show that the winning algorithm is significantly better than the 
other algorithms. d, Blob plot for visualizing ranking stability based on bootstrap 

sampling. The median area of each blob is proportional to the relative frequency 
of achieved ranks across 1,000 bootstrap samples. The median rank for each 
algorithm is indicated by a black cross. The 95% bootstrap intervals across 
bootstrap samples are indicated by black lines. e, The winning algorithm holds 
the first place across five different ranking schemes. f, High Kendall’s tau scores 
indicate that the ranking results are stable. The violin plot shows descriptive 
statistics with the median value represented by the horizontal solid line within 
the box, the mean value represented by the horizontal dashed line, the lower and 
upper quartiles delineating the borders of the box and the vertical black lines 
indicating 1.5 × IQR.

Fig. 4 | Quantitative and qualitative comparison between the top three 
algorithms and SOTA generalist cell segmentation algorithms: KIT-GE (top 
solution in the segmentation benchmark of the CTC), Cellpose, Omnipose and 
their variants under different training strategies. a–e, Dot and box plot of the 
F1 scores on the whole testing test (n = 422 independent images) (a); brightfield 
images (n = 120 independent images) (b); fluorescent images (n = 122 independent 
images) (c); PC images (n = 120 independent images) (d); and DIC images (n = 60 
independent images) (e). The box plots display descriptive statistics with the 
median value represented by the horizontal line within the box, the lower and 
upper quartiles delineating the borders of the box and the vertical black lines 
indicating 1.5 × IQR. f, Example segmentation results of the four microscopy 

image modalities, brightfield, fluorescent, PC and DIC images (from top to 
bottom). g, Quantitative comparison on the post-challenge testing set (n = 157). 
The box plot shows descriptive statistics across the post-challenge testing cases, 
with the median value represented by the horizontal line within the box, the 
lower and upper quartiles delineating the borders of the box and the vertical 
black lines indicating 1.5 × IQR. Cellpose-pretrain, Cellpose pretrained model 
(‘cyto2’); Cellpose-scratch, Cellpose model trained from scratch on the challenge 
dataset; Cellpose-fine-tune, Cellpose fine-tuned model on the challenge dataset; 
Omnipose-pretrain, Omnipose pretrained model (‘cyto2’); Omnipose-scratch, 
Omnipose model trained from scratch on the challenge dataset; Omnipose-
finetune, Omnipose fine-tuned model on the challenge dataset.
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long-range dependencies in images, whereas CNNs usually process local 
image patches. Second, Transformers have a larger model capacity than 
CNNs23, enabling them to learn intricate patterns and model nuanced 
relationships in images, which are essential for accurate cell segmenta-
tion. Third, Transformers excel in transfer-learning settings, allowing 
the model to pretrain on large datasets and subsequently fine-tune 
specific downstream tasks or new datasets with limited annotations. 

Notably, this effective strategy was also successfully adopted by the 
winning algorithm.

The winning algorithm demonstrated a remarkable level of superi-
ority compared to the leading algorithm from the CTC Challenge, even 
after the latter was retrained on our dataset. This notable improvement 
can be attributed to the unparalleled diversity of the dataset. Unlike  
the CTC Challenge dataset, which only comprised label-free images, 
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our challenge dataset encompassed both labeled and label-free images. 
Furthermore, our challenge focused on universal segmentation algo-
rithms, whereas the top-performing teams of the CTC Challenge devel-
oped tailored models for each dataset36,37. This fundamental difference 
in strategy likely contributed to the substantial performance gap.

In addition to the Transformer-based architecture, we also iden-
tified several useful strategies for achieving top performance. First, 
different from the typical detection-then-segmentation paradigm38, 
multihead outputs were employed by most of the top algorithms25,29,31, 
which converted the instance segmentation task into distance map 
regression tasks and a cell foreground semantic segmentation task, 
followed by post-processing to merge the output as instance labels. 
This approach was conclusively demonstrated to be superior to the 
conventional detection-then-segmentation paradigm in this chal-
lenge. Another crucial aspect was the adoption of diverse and robust 
data augmentation techniques, which is important to improve the 
model generalization ability and reduce overfitting. In addition to 
commonly used global intensity augmentations (for example, scaling, 
noise addition and blurring) and spatial augmentations (for example, 
rotation, zooming and flipping), participants introduced innovative 
augmentation methods. For example, Lee et al.25 employed cell-wise 
random perturbations in image intensity, whereas Li et al.39 used Mosaic 
data augmentation40, enabling the model to learn object identification 
at varying scales. Moreover, employing efficient backbone networks, 
such as SegFormer26 and ConvNext30, offered a favorable accuracy–
efficiency tradeoff. The winning algorithm also demonstrated that 
the slide-window-based method was an efficient strategy for scal-
able inference (Supplementary Table 8). Specifically, the input image 
was partitioned into multiple smaller patches and their predictions 
were subsequently stitched together to form the final label map. This 
method proved particularly crucial for whole-slide image segmenta-
tion, considering the inherent limitations of RAM and GPU memory 
in real practice.

Additionally, all the top three teams explored the potential of 
leveraging the unlabeled images to improve the segmentation perfor-
mance. Specifically, T1-osilab25 employed consistency regularization41 
to match the algorithm’s predictions on the clean and degraded unla-
beled images and introduced an additional head module to reconstruct 
the unlabeled images42. Both T1-osilab25 and T2-sribdmed29 investigated 
pseudo-label learning, generating pseudo-labels for unlabeled images 
using trained models, followed by training the network with both 
pseudo-labels and ground-truth annotations. T3-cells31 implemented 
the uncertainty-aware Listen2Student mechanism43 to train a student 
network with low-uncertainty pseudo-labels; however, despite these 
joint efforts, none of the employed methods demonstrated a notable 
enhancement in segmentation performance. Thus, it remains an open 
question how to effectively use unlabeled data to boost cell segmenta-
tion performance.

Furthermore, we made a noteworthy observation concerning 
the commonly employed transfer-learning algorithm, which exhib-
ited a phenomenon known as catastrophic forgetting35. The original 
Cellpose and Omnipose generalist models, pretrained on a diverse 
array of microscopy images, demonstrated the ability to generalize 
to a portion of the unseen testing images; however, their fine-tuned 
counterparts, exhibited a notable performance degradation, as they 
could only segment images present in the training set, while losing 
previously learned capability to handle unseen images. The winning 
algorithm addressed this issue by implementing a simple yet effective 
strategy known as cell memory replay28, aiming to relearn the existing 
data during fine-tuning. More specifically, the fine-tuning procedure 
involved combining images from both the existing dataset and the new 
dataset as a mini-batch for training the model, allowing the algorithm 
to retain its competence in handling both known and new images.

To promote the widespread applicability of the new SOTA algo-
rithms, all top-performing teams have made their algorithms publicly 

available on GitHub, complete with comprehensive preprocessing, 
training and testing code; however, a critical challenge remains in 
bridging the gap between these advanced algorithms and their seam-
less integration into daily biological practice, as it often demands a 
basic level of computational expertise to apply these algorithms to 
new images successfully. To bridge this gap, we invited the top three 
best-performing teams to integrate their algorithms into Napari44, an 
open-source interface specifically designed for user-friendly biologi-
cal image visualization and analysis. In this way, users gain convenient 
access to these high-performing algorithms, enabling them to effort-
lessly apply the segmentation techniques to their own images without 
necessitating additional coding. Furthermore, to facilitate even greater 
accessibility and ease of use, the algorithm Docker containers were 
thoughtfully released. This strategic move empowers users to perform 
batch image segmentation with utmost simplicity, as a single-line com-
mand suffices to initiate the process.

These new cell segmentation algorithms have many potential 
applications in various biological tasks. For example, cell segmenta-
tion in mass cytometry imaging, as demonstrated by Jackson et al.1, was 
pivotal in characterizing cellular phenotypes in breast tumor tissues. 
These phenotypes, aligning closely with pathologist-assigned tumor 
grades, revealed complex multicellular structures. Similarly, cell seg-
mentation played a crucial role in quantifying molecules at a single-cell 
level, as seen in the work of Capolupo et al.2, leading to the discovery 
of new regulatory mechanisms in dermal fibroblasts. Additionally, the 
application of cell segmentation in disease progression studies, such as 
those by Risom et al.45, has been instrumental in characterizing cancer 
microenvironments in multiplexed ion beam imaging by time of flight 
of tissue microarrays.

This work has certain limitations. While the challenge dataset was 
indeed diverse, it was confined to two-dimensional (2D) microscopy 
images due to the available datasets; however, three-dimensional 
(3D) microscopy images are becoming increasingly prevalent46, 
which pose new segmentation challenges, such as the large-scale 
volume and anisotropic resolutions. Additionally, while the integra-
tion of napari cell segmentation interfaces has improved accessibility 
for biologists, these algorithms currently do not support interactive  
feedback from users. Furthermore, the scope of the challenge  
was restricted to segmentation tasks, omitting classification tasks. 
Future endeavors should aim to broaden the benchmark to include 
more complex 3D images, coupled with classification tasks. There is  
also a compelling need to develop a biologist-in-the-loop system, 
enabling more effective collaboration between algorithms and 
human experts.

In conclusion, the challenge results present a successful proof of 
concept of generalist cell segmentation algorithms, benefiting from the 
collective expertise of both biological imaging and machine learning 
experts. The Transformer-based algorithm surpassed previous SOTA 
methods by a large margin, which can efficiently generate accurate cell 
contours on a wide range of microscopy images without user interven-
tion. Furthermore, the top algorithms have been made open-source 
and seamlessly integrated into user-friendly interfaces. This integra-
tion holds great potential for accelerating microscopy image analysis 
throughput and fostering new discoveries in quantitative biological 
research. We aim to establish this challenge as a sustainable benchmark 
platform and we enthusiastically welcome contributions of various new 
data to expand data diversity, paving the way for continuous advance-
ment in this vital field.
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Methods
Challenge organization
This challenge was preregistered in the Thirty-sixth Conference on 
Neural Information Processing Systems (NeurIPS) (https://neurips.cc/
Conferences/2022/CompetitionTrack) following a peer review process 
conducted by the competition program committee comprising experts 
in both machine learning and challenges organization. The challenge 
was officially launched on 15 June 2022 and ran for 139 days until 31 
October 2022, marking the testing submission deadline. Throughout 
the development phase, participants were given the opportunity to 
submit their tuning set segmentation results on the challenge plat-
form and obtain corresponding F1 scores. Moreover, to minimize 
entry barriers, we supplied a U-Net-based baseline model and offered 
a step-by-step tutorial to assist participants in becoming familiar with 
model training, inference and submission. Additionally, we furnished 
guidelines and suggestions on SOTA cell segmentation methods5,8,11,12, 
empowering participants to surpass the baseline and achieve higher 
levels of performance.

Dataset curation and preprocessing
The images were curated from multiple laboratories, each special-
izing in different cell types and modalities. Five labeled datasets were 
obtained from publicly available datasets with proper license permits 
or approval from the respective authors. Two public datasets contained 
a subset of labeled images and we augmented them with complete cell 
annotations for the previously unlabeled images. The annotation pro-
cess was conducted in the original data center by our author team. Eight 
public datasets lacked annotations and we generated cell annotations 
for the challenge. All testing images were newly acquired by ourselves 
for this challenge. It should be noted that the testing images remained 
unavailable to the public during the challenge, avoiding potential data 
or label leakage. In addition to the primary testing set, we further col-
lected a new batch of yeast (for example, clb1-6 Δ conditional mutants 
and pseudohyphal cells) and bacteria images (for example, Myxocco-
cus xanthus and Ruminiclostridium cellulolyticum) for post-challenge 
analysis, aiming to evaluate the algorithms’ accuracy and robustness 
when applied to unseen cells exhibiting a diverse range of appearances 
and morphologies. Detailed sources can be found in Supplementary 
Tables 1–4. We also presented the distribution of image size in Extended 
Data Fig. 3. The majority of the images are microscope patches, but 
several WSIs are also provided in each set. The training (labeled) set, 
tuning set and testing set exhibit a similar median image size, approxi-
mately one million pixels (1,000 × 1,000).

The original image formats included png, bmp, jpg, tif, tiff, npy and 
npz files. The npy and npz formats, which are not typical image formats, 
were converted to the widely used png format. All other image formats 
were retained as they were, to accommodate the diverse array of image 
formats that the developed algorithms might encounter. External 
datasets and pretrained models were allowed, but participants were 
asked to post the corresponding links to the competition forum and 
we also maintained a document of external datasets on the challenge 
homepage to make sure that these external datasets were available to 
all participants.

For the labeled dataset, all cells were annotated in each image, 
with the exception of red blood cells in blood and bone-marrow slides, 
as biomedical researchers predominantly centered on the stained 
leukocytes. The annotation team consisted of two biologists with  
10 years of experience, responsible for ensuring compliance with 
annotation requirements. In cases where data contributors provided 
cell annotations, the annotations were thoroughly checked and  
revised as needed. For contributors who provided unlabeled images, 
publicly available specialist models5,7,9,10 were initially employed 
to generate predictions. The resulting segmentation outcomes  
were subsequently subjected to manual revision by the biologists. 
Additionally, to maintain the quality and reliability of the dataset, each 

image–annotation pair underwent stringent quality control. Images 
with fewer than five cells were excluded from the dataset and cells 
containing fewer than 15 pixels were also removed. In total, we created 
more than 900,000 new cell annotations for the challenge, which is 
significantly larger than the provided new annotations in the recent 
CoNIC Challenge16 and CTC14.

Top three best-performing algorithms
Best-performing algorithm. Lee et al.25 (T1-osilab) incorporated 
model-centric and data-centric approaches to learn generalizable 
representations for heterogeneous microscopy image modalities 
and achieved a good tradeoff between model accuracy and efficiency. 
From the model-centric perspective, the framework adopted a typical 
encoder–decoder architecture to extract hierarchical features and inte-
grate them through skip connections. Concretely, SegFormer26 served 
as the encoder, while MA-Net27 was employed as the decoder, utilizing 
the Mish47 activation function. The network jointly predicted cell prob-
ability maps and regressed cell-wise vertical and horizontal gradient 
flows, followed by a gradient tracking post-processing to separate 
touched cells, which was originally proposed in Cellpose11. From the 
data-centric perspective, they tailored two cell-aware augmentations 
to extensively enrich the diversity of the dataset and combined them 
with commonly used intensity and spatial augmentation methods to 
improve model generalization. Specifically, image intensities were ran-
domized in a cell-wise manner and cell boundary pixels were excluded 
to separate the crowded cells. Moreover, a two-phase pretraining and 
fine-tuning pipeline was used to retrain the knowledge from external 
datasets, including TissueNet5, Omnipose8, Cellpose11 and LiveCell48. 
Furthermore, to address minor modalities, they were selected through 
unsupervised clustering with the latent embedding and subsequently 
over-sampled during training, thereby aiming to enhance the perfor-
mance of these less-represented modalities.

The model inputs were three-channel images. The overall loss 
function was the combination of binary cross-entropy loss and mean 
squared error (MSE) loss. The inference process relied on a sliding 
window strategy, a highly efficient approach for processing WSIs.  
During the merging of predictions from these small window patches, an 
importance map was generated and applied to the predictions, thereby 
preventing the recognition of the same cells at the patch boundary as 
multiple cells. The comprehensive integration of these approaches 
resulted in exceptional performance, effectively handling diverse 
microscopy image modalities with high accuracy.

Second-best-performing algorithm. Lou et al.29 (T2-sribdmed) 
designed a classification-and-segmentation framework that first clas-
sified the input image into one group and then performed cell segmen-
tation with a model trained for that group. The classification pipeline 
consisted of three steps. First, it employed a segmentation model 
trained on labeled images to generate pseudo-labels for unlabeled 
images. Second, the images were classified into four groups based on 
image intensities. Specifically, the first class included all single-channel 
images. The three-channel RGB images were converted to hue, satura-
tion and value color space. Within this transformed domain, images 
exhibiting a mean saturation (S) greater than 0.1 and a mean value (V) 
falling within the range [0.1, 0.6] were assigned to the second class. 
The remaining images with cell areas larger than 8,000 pixels were 
classified as the third class, while others were designated as the fourth 
class. Finally, a ResNet18 (ref. 49) was trained for automated group clas-
sification. The segmentation network followed a design of U-Net-like 
architecture, where the encoder was ConvNeXt30. Motivated by the 
observation that most cells in the first and second classes were round-
ish, a decoder with star-convex polygon-based cell representation50  
was integrated with the encoder for cell instance segmentation, termed 
as ConvNeXt-Stardist. NMS51 was employed in the post-processing  
to remove duplicated predictions. For the third and fourth classes,  
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the prediction head in HoverNet52 was adopted as the decoder, termed 
as ConvNeXt-Hover. The marker-based watershed algorithm was 
applied in the post-processing phase to separate touching cells.

There were four segmentation models in total trained for four 
image groups respectively. ConvNeXt-Stardist was trained with 
a combination of cross-entropy loss, Dice loss and MAE loss and 
ConvNeXt-Hover was trained with a combination of cross-entropy 
loss, Dice loss, MSE loss and mean squared gradient error loss. Both 
ConvNeXt-Stardist and ConvNeXt-Hover were pretrained on all images 
and fine-tuned on the images from the corresponding group. The 
model inputs were three-channel images. During inference, the input 
image was first classified into certain groups by the classification model 
and then processed by the segmentation model trained for the group.

Third-best-performing algorithm. Upschulte et al.31 (T3-cells) pro-
posed a contour proposal network (CPN)53, which treated instance seg-
mentation as a sparse detection problem by regressing object contours 
anchored at pixel locations. This enabled the model to handle multiple 
objects assigned to the same pixel and recover partially superimposed 
objects accurately. The shape-focused nature of contour representa-
tion learning also facilitated the development of inductive shape priors, 
potentially improving robustness in challenging conditions.

The CPN utilized the ResNeXt backbone network32 to extract mul-
tiscale feature maps, a regression head to generate candidate contour 
representations for each pixel and a classification head to determine 
whether an object was present or not at these locations. A proposal 
sampling stage extracted a sparse list of contour representations, 
which were transformed into the pixel domain using differentiable 
Fourier transformation to encode contour information in the fre-
quency domain54. The precision of the contours was further improved 
by using a displacement field generated by an additional regression 
head. In addition to the original CPN, this work introduced dedicated 
supervision for boundaries and proposed an extra branch to estimate 
localization uncertainty for boundaries. The multitask training objec-
tive was defined by a combination of the average absolute difference 
loss for contour regression, the generalized intersection over union 
(IoU) loss for boundary localization55, the absolute L1 distance for 
local refinement53, the distance loss for frequency regularization53, 
the binary cross-entropy loss for classification and the negative power 
log-likelihood loss for uncertainty estimation56.

The uncertainty-aware Listen2Student mechanism43 was applied 
to incorporate unlabeled examples during training, where a teacher 
model generated bounding boxes as pseudo-labels to supervise the 
student model. The model inputs were three-channel images. For 
post-processing, the Vanilla NMS relying solely on the classification 
score might not reliably indicate the proposal’s quality. To address this 
issue, the approach proposed in56 was employed to incorporate uncer-
tainty estimations into the NMS selection process. The object contours 
were transformed into segmentation masks through rasterization and 
region filling. A region-growing technique57 was further adopted for 
overlapping regions.

Existing SOTA cell segmentation algorithms
The following methods were designed for gray and two-channel micro-
scopy images, whereas the challenge dataset was curated for develop-
ing universal algorithms that were agnostic to different image channel 
formats. Thus, we preprocessed the challenge images to gray images 
using the ‘skimage.color.rgb2gray’ function.

Cellpose11 represents an important advancement in the field of 
general cellular segmentation algorithms. It used U-Net58 to predict 
horizontal and vertical gradient maps of cell instances and a foreground 
binary mask. After that, individual cells are segmented by grouping the 
pixels that point to the same center point in the gradient maps. This 
unique design allows it to be capable of processing a wide variety of 
cell morphologies in a unified framework. In the comparative studies, 

we used the most generalizable ‘cyto2’ model as the pretrained model, 
which was trained on the Cellpose dataset and user-submitted images.

Omnipose8 was an extension of Cellpose, aiming to handle very 
elongated cells, especially bacterial cells. The network architecture 
backbone was still U-Net but the model had four heads to predict 
four components: two gradient flows, a distance transform map and a 
boundary map. We also chose the ‘cyto2’ model to infer the challenge 
testing images.

Cellpose 2.0 (ref. 12) further introduced a transfer-learning-based 
method, an important branch toward general cell segmentation solu-
tions, to quickly adapt the pretrained models to new microscopy 
images. With a human-in-the-loop pipeline, users can train custom-
ized cellular segmentation models by fine-tuning pretrained Cellpose 
models with only 100–200 annotated regions of interest. The network 
architecture in Cellpose 2.0 was the same as the Cellpose model.

KIT-GE33 trained a U-Net model to predict cell distance and neigh-
bor distance, followed by watershed post-processing. Compared to 
the original U-Net58, the maximum pooling layers were replaced with 
2D convolutional layers with stride 2 and batch normalization layers 
were added after the convolutional layers.

Evaluation metrics
This challenge focused on two key metrics: segmentation accuracy 
and efficiency. While segmentation accuracy is a fundamental met-
ric in cell segmentation, we included efficiency in the evaluation to 
account for its significance during model deployment. If the challenge 
metrics only considered the algorithm accuracy, participants may 
solely prioritize it by employing the ensemble of multiple models15; 
however, such solutions may not be practical in real-world scenarios, 
particularly for biologists who typically have limited computational 
resources. Recognizing this, we incorporated efficiency as an evalua-
tion metric to guide participants in considering the tradeoff between 
model accuracy and efficiency.

Segmentation accuracy metric: F1 score. Cell segmentation is a 
typical instance segmentation task. We employed the widely used F1 
score to evaluate the segmentation results5,59,60. Specifically, each 
predicted cell mask is matched to the most similar ground-truth mask 
based on the predefined IoU threshold (0.5). A predicted cell mask is 
classified as correct segmentation as long as its IoU is over the prede-
fined IoU threshold. A higher threshold requires a larger overlap 
between the predicted cell mask and the ground-truth mask and a 
commonly used threshold is 0.5. Then, all the cells can be divided into 
three categories, including true positives (TPs), false positives (FPs) 
and false negatives (FNs). TP denotes correctly segmented cells,  
FP denotes wrongly segmented cells and FN denotes missed cells  
in the segmentation mask. After that, we can compute the precision 
and recall, which are defined by precision = TP

TP+FP
 and recall = TP

TP+FN
, 

respectively. The F1 score can be interpreted as a harmonic mean of 
the precision and recall, which is defined by

F1 = 2 × precision × recall
precision + recall

.

As the cells located in the boundaries are usually incomplete and have 
low practical value in various downstream analysis tasks, we removed 
these cells when computing the metrics.

Segmentation efficiency metric: running time. All the submitted 
Docker containers were run on the same desktop workstation with a 
12-core CPU, 32 GB RAM and one NVIDIA 2080Ti GPU. To obtain the 
running time T for each image, the testing images were segmented 
one by one. To compensate for the Docker container startup time, 
we gave a time tolerance for the running time. Specifically, the time 
tolerance was 10 s if the image size (height (H) × width (W)) was  
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no more than 1,000,000. If the image size was more than 1,000,000, 
the time tolerance was (H × W)/1,000,000 × 10 s. This time tolerance 
was determined by the open-source U-Net baseline.

Ranking scheme: rank-then-aggregate
Both F1 score and running time were used for ranking; however, the  
two metrics cannot be directly fused because they have different 
dimensions. Thus, we used a ‘rank-then-aggregate’ scheme for ranking,  
including the following three steps:

•	 Step 1. Computing the two metrics for each testing case and 
each team;

•	 Step 2. Ranking teams for each of the n testing cases such that 
each team obtains n × 2 rankings;

•	 Step 3. Computing ranking scores for all teams by averaging all 
these rankings and then normalizing them by the number of 
teams. The final rank will be determined by the mean ranking 
scores.

In addition to the employed rank-then-aggregate scheme, several 
other strategies can be used to obtain a ranking, but these may lead 
to different orderings of algorithms and thus different winners61. A 
typical ranking scheme was ‘aggregate-then-rank’: computing mean 
scores across all testing cases for each team and then using this aggre-
gation to rank each team. One can also use test-based procedures 
for ranking. Specifically, each pair of algorithms are compared by a 
statistical hypothesis tests. The ranking is then performed accord-
ing to the resulting relations or according to the number of signifi-
cant one-sided test results. In the latter case, if algorithms have the 
same number of significant test results, then they obtain the same 
rank. For analysis purposes, we computed the ranks of the 28 algo-
rithms based on five different ranking schemes: mean-then-rank, 
median-then-rank, rank-then-mean, rank-then-median and statistical 
significance test-based ranking.

Notably, for a transparent challenge, the evaluation code and 
ranking scheme were publicly available at the beginning of the chal-
lenge. For comparative analysis, we applied different ranking schemes 
to the 28 algorithms, including rank-then-mean, rank-then-median, 
median-then-rank, mean-then-rank and test-based rank. Most algo-
rithms had fluctuations under different ranking schemes but the  
winning algorithm consistently held the first place.

Ranking stability and statistical analysis
Ranking stability is an important factor for robust challenge results62. 
Thus, we applied bootstrapping and computed Kendall’s τ (ref. 63) 
to quantitatively analyze the variability of our ranking scheme.  
Specifically, we first extracted 1,000 bootstrap samples from the 
international validation set and computed the ranks again for each 
bootstrap sample. Then, the ranking agreement was quantified by 
Kendall’s τ. Kendall’s τ computes the number of pairwise concordances 
and discordances between ranking lists. Its value ranges [−1, 1] where 
−1 and 1 denote inverted and identical order, respectively. A stable 
ranking scheme should have a high Kendall’s τ value that is close to 1. 
To compare the performance of different algorithms, we performed a 
Wilcoxon signed-rank test because it is a paired comparison. Results 
were considered statistically significant if the P value was less than 0.05.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The dataset is available on the challenge website at https://neurips22- 
cellseg.grand-challenge.org/. It is also available on Zenodo at  
https://zenodo.org/records/10719375 (ref. 64). Source data are  
provided with this paper.

Code availability
The top ten teams have made their code publicly available at https://
neurips22-cellseg.grand-challenge.org/awards/. They are also available 
on Zenodo at https://zenodo.org/records/10718351.
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Extended Data Fig. 1 | Example segmentation results for four microscopy 
image modalities. Brightfield (the 1st-2nd rows), fluorescent (the 3rd-4th rows), 
phase-contrast (the 5th-6th rows), and DIC images (the 7th-8th) rows. Cellpose-
pretrain: Cellpose pretrained model (‘cyto2’). Cellpose-scratch: Cellpose model 

trained from scratch on the challenge dataset. Omnipose-pretrain: Omnipose 
pretrained model (‘cyto2’). Omnipose-scratch: Omnipose model trained from 
scratch on the challenge dataset.
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Extended Data Fig. 2 | Example segmentation results for the post-challenge 
testing images. Cellpose-pretrain: Cellpose pretrained model (‘cyto2’). 
Cellpose-scratch: Cellpose model trained from scratch on the challenge 
dataset. Cellpose-finetune: Cellpose fine-tuned model on the challenge dataset. 

Omnipose-pretrain: Omnipose pretrained model (‘cyto2’). Omnipose-scratch: 
Omnipose model trained from scratch on the challenge dataset. Omnipose-
finetune: Omnipose fine-tuned model on the challenge dataset.
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Extended Data Fig. 3 | Statistics of image size. a, Distribution of image size 
across training (labeled (n=1000 independent images) and unlabeled (n=1725 
independent images)), tuning (n=101 independent images), and testing 
sets (n=422 independent images). b, Distribution of image width and height 

across training (labeled (n=1000 independent images) and unlabeled (n=1725 
independent images)), tuning (n=101 independent images), and testing sets 
(n=422 independent images).
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